See all projects

Exploring the role of CRISPR in cell-based cancer immunotherapy

Hello! My name is Meha and I am from Vancouver, BC. I am working on a project relating to CRISPR and it's potential to cure cancer, since I am interested in coming up with new solutions and cures for dangerous disease including cancer I decided to apply my knowledge and enthusiasm to this specific research idea. After I finish my project I would like to participate in the Polygence symposium, submit my research to high school research journals and work on writing my book about cancer!!
Graduation Year
Student review

View Polygence scholar page
Project description

Cancer immunotherapy, particularly CAR-T cells, has transformed the landscape of cancer treatment, offering a paradigm shift in prognosis. To enhance the efficacy of cancer treatment, recent scientific endeavors have concentrated on harnessing the potential of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology where they use this technology to cancer treatments and cancer immunotherapy including the engineered CAR-T cell. There have been a lot of advances including correcting genetic mutation, curing genetic disorders, etc. this review paper will cover cancer immunotherapy, CAR-T cell therapy and it's mechanism, successful clinical trials, ongoing clinical trials, the current limitations as well as the future advantages of this technology.

Exploring the role of CRISPR in cell-based cancer immunotherapy
Project outcome

In this comprehensive review, we provide a concise overview of the CRISPR/Cas9 system, covering its structural and functional aspects in different phases. We then focus on its application in cancer immunotherapy, particularly with regard to TCR, TIL, and CAR-T cells, highlighting the engineering of CAR-T cells for precision cancer targeting, exemplified by FDA-approved therapies like Yescarta and Kymriah. Ethical considerations in CRISPR/Cas9's use in cancer therapy are discussed, along with its diverse applications in degenerative diseases, viral infections, genetic disorders, pathogen detection, and agriculture. Challenges related to in vivo delivery for precise cancer gene targeting are also addressed. The advent of CRISPR/Cas9 technology has emerged as a pivotal turning point in the landscape of cancer treatment, underscoring its profound potential to revolutionize therapeutic paradigms. By virtue of its precision and adaptability, CRISPR/Cas9 offers the prospect of targeting malignancies at the genetic level with an unprecedented level of accuracy, thereby mitigating off-target effects and enhancing therapeutic efficacy. Furthermore, CRISPR-based approaches hold the promise of tailoring treatments to the genetic profiles of individual patients, fostering a new era of personalized oncology interventions. As the field of oncological research continues to harness the capabilities of CRISPR, its transformative influence on cancer treatment strategies is poised to be increasingly profound and far-reaching.

PhD Doctor of Philosophy candidate
Engineering, Medicine, Biology
Cancer, Drug Delivery, Cancer, Cancer Therapy, Pain Management and Therapy, Gene Therapy, Gene Editing, Stem Cells, Chemistry, Biology, Engineering, Biomedical Engineering

Interested in starting
your own project?
Apply today!

Already have an account? Log In
By registering you agree to our terms of use and privacy policy, and consent that we or our partner provider may reach out to you using a system that can auto-dial.