Exploring the role of CRISPR in cell-based cancer immunotherapy

View Polygence scholar page
Project description
Cancer immunotherapy, particularly CAR-T cells, has transformed the landscape of cancer treatment, offering a paradigm shift in prognosis. To enhance the efficacy of cancer treatment, recent scientific endeavors have concentrated on harnessing the potential of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology where they use this technology to cancer treatments and cancer immunotherapy including the engineered CAR-T cell. There have been a lot of advances including correcting genetic mutation, curing genetic disorders, etc. this review paper will cover cancer immunotherapy, CAR-T cell therapy and it's mechanism, successful clinical trials, ongoing clinical trials, the current limitations as well as the future advantages of this technology.

Project outcome
In this comprehensive review, we provide a concise overview of the CRISPR/Cas9 system, covering its structural and functional aspects in different phases. We then focus on its application in cancer immunotherapy, particularly with regard to TCR, TIL, and CAR-T cells, highlighting the engineering of CAR-T cells for precision cancer targeting, exemplified by FDA-approved therapies like Yescarta and Kymriah. Ethical considerations in CRISPR/Cas9's use in cancer therapy are discussed, along with its diverse applications in degenerative diseases, viral infections, genetic disorders, pathogen detection, and agriculture. Challenges related to in vivo delivery for precise cancer gene targeting are also addressed. The advent of CRISPR/Cas9 technology has emerged as a pivotal turning point in the landscape of cancer treatment, underscoring its profound potential to revolutionize therapeutic paradigms. By virtue of its precision and adaptability, CRISPR/Cas9 offers the prospect of targeting malignancies at the genetic level with an unprecedented level of accuracy, thereby mitigating off-target effects and enhancing therapeutic efficacy. Furthermore, CRISPR-based approaches hold the promise of tailoring treatments to the genetic profiles of individual patients, fostering a new era of personalized oncology interventions. As the field of oncological research continues to harness the capabilities of CRISPR, its transformative influence on cancer treatment strategies is poised to be increasingly profound and far-reaching.
